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Abstract-Consideration is given to the problem concerning the interaction of a continuous turbulent flow 
with a dispersed impurity uniformly distributed in it with the account of the involvement of particles into 
energy-intensive fluctuations of the continuous medium. Correlations are obtained relating the drag 
reduction in the turbulent two-phase flow to the size of particles and dispersed phase concentration. The 
limitations are established which should be imposed on the concentration and size of particles to attain 
the regime of reduced drag in a two-phase turbulent flow. The theoretical relations obtained are in good 

agreement with the available experimental results. 

1. INTRODUCTION 

THE JOINT motion of a carrying turbulent flow and of 
the dispersed impurity distributed in it in the form of 
solid particles, gas bubbles or liquid drops forms a 
basis for many processes taking place in the most 
variegated (in both function and design) apparatus 
of chemical technology. In view of this, considerable 
effort has been devoted recently to the study of the 
mutual effect of the moving phases and to the influ- 
ence of dispersed phase on the intensity of transfer 
processes in a continuous flow. The analysis of the 
available work pertaining to this subject showed that 
two-phase turbulent flows possess a number of dis- 
tinguishing features which are not characteristic of 
single-phase flows [l-l 51. 

The experimental results listed in Table 1 allow it 
to be concluded that a small number of particles of a 
certain size present in a turbulent flow leads to the 
effect of turbulent flow ‘laminarization’ characteristic 
of which is the reduction of drag due to the dispersed 
phase-induced reconstruction of the macro- and 
microstructure of flow. This offers a practical oppor- 
tunity to control the carrying flow parameters through 
the action of particles on the continuous medium for 
enhancing the positive effect. This control should be 
based on relations that connect the kinematic charac- 
teristics of flow with the dimensions and con- 
centration of the dispersed phase suspended in it. In 
view of this, the object of this study was to establish 
the law that would govern the effect of friction 
reduction in a turbulent two-phase flow and to give 
its mathematical description. 

2. ANALYSIS OF FAMILIAR EXPERIMENTS 

In order to obtain definite knowledge about the 
influence of particles on the energy losses by a tur- 

bulent two-phase flow and also to evaluate the inten- 
sity of the affecting factors, the classification of the 
available experimental material was carried out on the 
following principles. 

(i) Orientation of the test section in space (the 
influence of body forces). 

(ii) Characteristics of the continuous medium 
(liquid or gas) and of the transport velocity. 

(iii) Dimensions and concentration of the dis- 
persed phase. 

The experiments with air-solid particle systems in 
horizontal tubes carried out by Dogin [l], Mulgi [2], 
Yotaki and Tomita [3], Laats [4], Pechenegov [5], and 
by a number of other researchers [6-lo] covered fairly 
large ranges of the mean mixture velocities, particle 
sizes and of the test pipeline diameters. The value of 
mass concentration of particles varied in the exper- 
iments from fractions of a kilogramme to 1 O-l 5 kg of 
particles per kilogramme of air. 

The results of these works, presented in Table 1 and 
summarized in Fig. l(a), testify to the possibility of 
both increasing the drag of a turbulent two-phase flow 
[l-6, 81 and decreasing it appreciably under certain 
conditions [4, 7, 9, lo] which include a low mass 
concentration of dispersed phase and also a small 
size of particles (in the majority of experiments the 
reduction of friction was observed in the presence of 
particles as small as 15-30 pm). The size of particles 
that allows the effect of drag reduction in horizontal 
tubes to be seen grows with the channel diameter 
and decreases with an increasing density of dispersed 
phase. 

The trends noted are also observed in other exper- 
imental systems (water-solid particles [Ill) and in 
vertical and inclined pipelines ([4, 9, 10, 12-151, Fig. 
l(b)). 

The experimental data taken from the relevant 
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NOMENCLATURE 

volumetric concentration of dispersed 
phase 
averaged field of volumetric 
concentration 
macro- and microscale fluctuations of 
concentration 
coefficient of averaged sliding of phases 
diameter of channel 
coefficient of turbulent diffusion of 
particles 
diameter of particles 
free fall acceleration 
instantaneous pressure 
averaged component of instantaneous 
pressure 
total pressure components, inherent 

in macro- and microscale vortices 
radius of channel 
channel diameter-based Reynolds 
number 
instantaneous velocity of continuous 
medium 
averaged component of instantaneous 
velocity of continuous medium 
mean velocity of continuous medium 
fluctuation components of macro- and 
microscale instantaneous velocity 

u+ 

u* 
vi 
pi 

Vf 

V 
Xi.1 

Y+ 

dimensionless averaged velocity of 
continuous medium 
dynamic velocity 
instantaneous velocity of particle 
averaged component of instantaneous 
particle velocity 
fluctuational velocity of particle 
certain volume 
coordinate 
dimensionless distance from the 
wall. 

Greek symbols 
6L viscous sublayer thickness 
6, dimensionless viscous sublayer 

thickness 
1,) I, coefficient of hydraulic resistance of 

single- and two-phase flows 
PP degree of involvement of particles in 

fluctuational motion 
p, pp density of continuous medium and 

particles 
z time of relaxation of particles 
%v shear stress on the wall 
v, VT kinematic and turbulent kinematic 

viscosities. 

literature and classified by the similarity of a number 
of certain symptoms thus showed the double influence 
of dispersed phase on the magnitude of energy losses 
by a two-phase flow. On the one hand, this is the 
growth of losses in the case of large particles and their 
concentration in the flow, on the other hand, this is 
the reduction in energy losses in a two-phase flow as 
against a one-phase flow in the presence of small 
particles in the flow and their small concentration. 
The increase in the concentration of particles leads to 
the loss of the effect of friction reduction and to the 
growth of the drag of a two-phase flow. 

Of particular practical interest are those exper- 
imental data which indicate the possibility for reduc- 
ing the drag of a two-phase flow in comparison with 
that of a single-phase flow under certain conditions. 

The results of works [4, 7-101 obtained with hori- 
zontal orientation of the test section and use of small 
particles of different diameters revealed their critical 
size when the influence of the dispersed phase on the 
drag vanishes (Figs. 2(a) and (b)). Determination of 
the critical size of particles in a vertically ascending 
flow from the data of refs. [4, 10, 141 is presented in 
Fig. 2(c). 

Comparison of Figs. 2(a), (b) and (c) and their 
analysis allowed the confirmation of the following 
regularities. 

(i) An increase in the dimensions of the channel 
leads to the growth of the upper critical size of par- 
ticles. 

(ii) An increase in the density ratio of the phases 
lowers this limit. 

(iii) The critical dimensions of the horizontal and 
vertical orientations of the flow differ substantially 
from one another. 

Moreover, the behaviour of the relations in Figs. 
2(a), (b) and (c) indicates the presence of the mini- 
mum and maximum sizes of particles of the dispersed 
phase in the range between which the drag reduction 
effect is manifested. 

The earlier theoretical constructions [16-181 
showed that the mathematical description of the drag 
reduction effect can be obtained on the basis of Kol- 
mogorov’s ideas about the turbulent two-phase flow 
pulsational energy balance. 

It is known that in single-phase turbulent flows the 
drag is related to the kinematic parameters as 

1, = 8zw/pU2m (1) 

7, = (ll.5v/6J2p. (2) 

Relations (1) and (2) show that the value of 
hydraulic losses, just as the value of shear stresses at 
the wall, is uniquely connected with the thickness of 
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Table I. The results of experimental investigations of turbulent two-phase flows 

1983 

Dimension Range 
(diameter) Density of variation of Number of 

of a channel Material and sizes particles, Interval concentration the curve in 
References D (md of particles, d, (mm) rp 0% m-9 (range) Re of S (kg kg- ‘) Figs. 1a.b ‘12/A, 

1 2 3 4 5 6 7 8 

Horizontal tubes with air as a continuous medium 
125.0 millet, 1900 1332 
26.0 bronze, 35 8500 

130.8 soy beans, 5600 1250 
12.7 glass, 97 2500 
32.7 glass, 40 2500 
32.7 corundum, I7 3970 

Vertical tubes with air as a continuous medium 
22.2 glass, 10 2500 
22.2 glass, 20 2500 
22.2 glass, 34 2500 
22.2 glass, 59 2500 
25.4 glass, 250 2500 

Horizontal tubes with air as a continuous medium 
14.0 marble, 1 IO 2600 
24.4 boron carbide, 4.65 - 
32.1 electrocorundum, 15 3970 
32.1 electrocorundum, 23 3970 
31.8 glass, 170 2500 
31.8 glass, 340 2500 
31.8 glass, 570 2500 
22.1 glass, 15 2500 
22.1 slass. 36 2500 
22. I glass, 55 2500 
22.1 glass, 2 1 2500 
22.1 glass, 2 1.6 2500 

Vertical tubes with air as a continuous medium 
22.1 glass, 15 2500 
22.1 glass, 2 1 2500 
22.1 glass, 21.6 2500 
22. I glass, 36 2500 

1200&3001000 
52 000-87 000 
70000-120000 

25400 
40000 
40 400 

25 000 
24 420 
23 680 
23 680 
28 800 

6500-25 000 
3720-6460 

40 40062 000 
40 400-62 000 
25000-100000 
25000-100000 
2500~100000 
11000-23 000 
11000-23 000 
11000-23 000 
1 I 000-23 000 
1 I OO(r23 000 

11000-23 000 
I I 000-23 000 
11000-23 000 
10000-15000 

Horizontal rectangular channel with air as a continuous medium 
Pll 40*40 polystyrene, 320 - 11580-13000 

Vertical tubes with air as a continuous medium 
WI 50.0 anionite, 520 1130 29 70&66 700 
‘,:p 76.2 25.4 zinc, ahnninium, 40 15 7150 2700 100000-180000 35000 

1141 25.4 aluminium, 48 2700 100000-180000 
u41 25.4 aluminium, 70 2700 100000-180000 

Vertical tubes with water as a continuous medium 
[I51 24.0 rubber, 922 1200 3000-40 000 

o-4 
o-14 
O-10 
O-3 
O-2 
O-1.5 

O-l.5 
O-l.5 
O-l.5 
O-l.5 
o-1.5 

O-4 
300-400 

O-3 
O-3 
1-6 
l-5 
1-6 
O-l 
O-l 
O-I 
o-l 
o-l 

O-l 
o-l 
o-l 
O-2 

(MM% 

O-2 
O-3 
&6 
O-5 
O-5 

o-l% 

- >I 
- >I 
- >I 
- >I 

I >I 
2 0.85 

12 0.64 
13 0.5 
14 0.3 
15 0.37 
16 1.3 

- >l 
- >l 

3 0.6 
4 0.7 
5 >l 
6 >l 
7 >I 
8 0.9 
9 >I 

10 >l 
11 0.9 
- 0.89 

17 0.9 
- 0.88 
18 0.86 
19 0.7 

- 

- 
- 
20 
21 
- 

- 

<I 

<I 
0.9 
0.6 
0.65 
0.68 

0.85 

the viscous sublayer. In turn, the viscous sublayer 
thickness in a turbulent flow is governed by the local 
balance of the production and dissipation. According 
to Barenblatt [ 161, the mechanism underlying the tur- 
bulent friction reduction is determined by an ad- 
ditional dissipation of turbulent energy expended for 
suspending particles in the gravity field. An alternative 
viewpoint attributes the drag reduction effect to the 
aerodynamic interaction of phases and selective quen- 
ching of a portion of the energy spectrum, which 
corresponds to large wave numbers [17], or to the 
distortion of a portion of the energy spectrum, which 
corresponds to small wave numbers [ 181. 

Comparison of different views on the problem with 
the above analysis of familiar experimental results 
dictates the necessity of simultaneous consideration 
of the aerodynamic interaction of phases and inter- 
action of particles with the fields of body forces when 
constructing the mathematical description of the 
phenomenon. 

3. MODEL 

The mathematical description of the effect of drag 
reduction is based on the momentum transfer equa- 
tions for continuous and disperse media, written for 
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FIG. I. The summarized results concerning the dispersed 
phase effect on the friction drag of a turbulent two-phase 

flow. (a) horizontal tubes ; (b) vertical tubes. 

instantaneous velocities and modified with allowance 
for their two-phase nature, and on the continuity 
equation for a continuous medium 

ihi dt+U!& -GE 
c P axi 

+v&-g&~(U,-vi) (3) 
e 

&Ii 
dl+V.~=~(ui-Vi)-Si 

e 

The entire spectrum of fluctuations is divided into 
two main intervals: the interval of low frequencies 
where the extraction of energy from the averaged flow 
or the ‘production of turbulence’ take place and the 
interval of mean and high frequencies for which the 
characteristic feature is the transfer of energy over the 
spectrum and its dissipation into heat. The instan- 
taneous velocity of the turbulent flow was, therefore, 
represented as a sum of the averaged velocity and two 
pulsational components corresponding to turbulent 
vortices of macro- and microscales [ 191 

Ui = 7Zi+U~+Ufe (6) 

It must be borne in mind that the following condition 
is valid for developed turbulent flows 

I& >> u f > IJ. (7) 

I 2 3 

log dp 

FIG. 2. Critical dimensions of particles. (a) Re = 40 400,3 1.8 
nun <D d 32.7 mm, horizontal tube; I& = 31 pm; (b) 
Re = 20 000, D = 21.1 mm, horizontal tube, dpm z. 28 pm ; 
(c) Re = 25 000, DS = 22.2 mm, vertical tube, h$., = 165 pm. 

Symbols as in Fig. 1. 

Since the low-frequency macroscale formations are 
responsible for the ‘production of turbulence’, the 
increase in the local energy dissipation in a turbulent 
two-phase flow is governed by the interaction of par- 
ticles of the dispersed phase with precisely this energy- 
intensive portion of the spectrum. 

Assume that the flow contains a dispersed phase 
consisting of identically sized particles with small 
volumetric concentration and that the aerodynamic 
interaction of phases obeys the Stokes law, as is al- 
ready incorporated in the original system of equations 
(3)-(S). The distribution of the dispersed phase over 
the flow cross-section is uniform. With particles being 
rather small (the condition for the applicability of the 
Stokes law), it is possible to assume a close enough 
coincidence between the motion of each particle and 
that of the liquid itself if it had occupied the same 
volume as the particle does. Consequently, the con- 
centration of the dispersed phase can be represented 
by 

c = E+c’+c”. (8) 

The connection between the averaged and fluc- 
tuational velocities of the flow and of the particles is 
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described by relations involving phase slip coefficients 

pp = uf/(u[+ui”) = (1 +u*r/0.1R)-“2 (9) 

c2 = Vi/l& (10) 

In order to determine the degree of the involvement 
of particles in the pulsational motion of the stream, 
Mednikov’s formula [20] was used. Up until now, no 
single correlation has been obtained for determining 
the coefficient of the averaged slip of phases Cz. It is 
only safe to say that the mean-integral lag of particles 
behind the continuous medium amounts to 510%. 
Based on experimental investigations, a number of 
authors obtained empirical and semi-empirical ex- 
pressions for determining Cz which have a very limited 
application, but which can, however, be employed 
in calculations when the parameters of the systems 
coincide with, or are close to, the experimental con- 
ditions. The list of these formulae is given in ref. [20]. 

With the concentration and the size of the dispersed 
phase being small, the transition was made to the 
description of the two-phase system by equations for 
a continuous medium with source terms. In this case 
a new term appears on the RHS of equation (3) for a 
certain acceleration of the continuous medium due 
to the interaction of the dispersed phase with the 
gravitational field 

-gippVp = pVu or a = -gi:c (11) 

With allowance for the connections introduced, the 
equations for the instantaneous velocities and aver- 
aged flow parameters were reduced to the form 

x{(l-c,)z.+(l-@(uf+u/~+(l-cc,)ui(c’+cN) 

+(l -pJ[(uf+i)(c’+c”>l} 

(13) 

a4 a(ls,tq 
at+ ax - + -&l+4mm e c 

2 
PP 1 = --lLE+vA&--- 

P axi 5 
p ‘E {(l--c2wi+U-PP) 

X[(Uf+l4i”)(C’+C’)]}-gi I+:? * (14) 
( > 

Traditional transformations of momentum transfer 
equations (13) and (14) gave the turbulent pulsational 
energy conservation equation 

x[(y’+y”)(u:+G)-((uf)(u:)]dI’ 

+(1 -c&u~(c’+c”)+(l -~)uf[(u’+ui”)(c’+c”) 

-(ul+y”)(m]}dv-9,; u;(c’+c’ydV. 
I 

(15) 

It is seen from this equation that the fluctuations of 
concentration and the averaged slip of phases become 
essential only when the body forces are taken into 
account. 

The analysis of equation (15) in its general form is 
rather difficult ; therefore, a number of complementary 
conditions were incorporated that reflect the speci- 
ficity of the flow considered. With allowance for the 
scale ratio of the instantaneous velocity components, 
equation (7), the components of the energy balance 
equation that incorporate the contribution of the micro- 
scale fluctuations into the overall balance of fluc- 
tuational energy were neglected without evaluating 
the values of the first and second velocity derivatives ; 
this rather corresponds to the monochromatic rep- 
resentation of the energy intensive portion of the spec- 
trum. The terms of the equation that involved the 
derivatives of pressure gradient connected with the 
small scale velocity gradients were also ignored due 
to their smallness. 

With the use of the assumptions adopted and of the 
energy equilibrium hypothesis for macroscale vortices 
[19], equation (15) yielded the fluctuational energy 
balance equation for macroscale vertical structures 

X 
I 
(1 -~)Uf(U~C’-~ dV+gi 3 c’uf dV. 

I 
(16) 

The left-hand side of this equation determines the 
rate of energy extraction from the averaged motion. 
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The tirst term on the right-hand side of this equation 
stands for the work done by large vortices to resist 
additional Reynolds stresses originating due to the 
presence of these vortices. It can be expressed in terms 
of the turbulent viscosity and strain rate tensor at the 
diagonal elements being equal to zero 

- 1 au; au; 
ufu:-uiu, = -2v,- - + - . 

( > 2 8X, 8Xi (17) 

The second term on the RHS of this equation gives 
energy dissipation due to viscosity, the third term 
takes into account energy dissipation due to the 
involvement of particles into the pulsational motion of 
the continuous medium and the fourth term accounts 
for the dissipation due to the averaged slip of phases. 
The sixth term corresponds to the flow energy losses 
to suspend particles in the fields of body forces. 

The fifth term represents the work done by large 
vortices to transfer the mass involved in their motion 
and, by analogy with equation (17), can be expressed 
in terms of the turbulent diffusion and concentration 
fluctuation tensor at the diagonal elements being 
equal to zero 

u;c’-v= (18) 

The fluctuational energy balance equation (16) thus 
shows that addition to the viscous dissipation, the 
dispersed phase-carrying turbulent flow also has the 
mechanism of additional dissipation of turbulent 
energy which is based on the entrainment of particles 
into the pulsational motion, averaged slip of phases, 
pulsational mass transfer and on the loss of energy to 
suspend the particles. 

For small-size particles, it is reasonable to assume 
the identity between the motions of the dispersed 
phase particles and of the continuous medium. With 
allowance for the degree of the entrainment of 
particles, this made it possible to express the fluc- 
tuations of concentration as 

d/E = p&f&,). (1% 

Equation (18) involves the coefficient of turbulent 
diffusion of particles D,,. It was determined from the 
results of [20] in conformity with Reynolds analogy 
between the transfer of mass and momentum 

D,, = &DT = &v,. (20) 

After the substitution of equations (17)-(20), 
equation (16) transforms to 

To integrate the equation of fluctuational energy 
(21), it is necessary to prescribe the velocity profiles 
of the averaged and fluctuational flows of the carrying 
medium. The velocity profile of the averaged flow was 
prescribed by the power law 

li+ = WY+)“. (22) 

This yielded the expression for the coefficient of 
turbulent viscosity 

The fluctuational velocities in macroscale vortices 
were prescribed by Townsend approximations [19] 

u’, = -u; = Aa2x2x, exp [ - (Qa’(xz +x:)1 

u; = A(l-a2x:)exp[-(+)a2(x$+x:)]. (24) 

After the substitution of equations (22), (23) and (24) 
into the fluctuational energy conservation equation 
(21) and integration of the latter with allowance for 

l/a = 6,, (25) 

the connection was obtained between the main 
characteristics of the flow 

The integral energy balance equation (26) was 
obtained for the horizontal orientation of the channel. 
In the case of a vertical ascending flow, the rep- 
resentation of the integral energy balance fully 
coincides with equation (26). In the case of an inclined 
orientation of the flow, the last term will include the 
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angle of channel inclination, whereas for the descend- scope of the adopted two-layer model of a turbulent 
ing vertical flow the last term in equation (26) will boundary layer one has 
change its sign and will account for the generation of 
turbulence rather than its dissipation. Consequently, u+ =y+ Y+ <a+ 
the least advantageous flow regime is a vertically 
descending flow. 

I+ = B(Y+Y .r’+ 26,. (32) 

To simplify the representation of equation (26), the The condition for the equality of velocities should 
following designations were introduced be fulfilled at the boundary of the viscous sublayer 

-2d-(y)-2r(F)]. (30) 

With equations (27)-(30) taken into account, 

(27) y+ = 6, u, = li+. 

Consequently 

(28) 6, =Bdm, B = (~5+)‘-~ 

and equation (31) can be expressed as 

x ir,(m) 

1 

= 0. 

equation (26) can be transformed as 

B(h+)m+‘r,(m) = vr,(m)+ TJr 

& +(8+)yg 3.&l-&)+,(l-c*)~ 
-( > 

If the following conditions are fulfilled 

r,(m) > A h 3&U-14+l(l-~~h+, 
> 

or 

-: f(1 -a)&$ i(6+)*-“T,(m) 
A< 

r,(m) 

+~c~g2&(6+)*-T2(m). (31) 
i&(1 -/.q+ fi(l --cz)/J 2 P 

then equation (35) will have two real roots 

+,~2r2(m)f i( A- kppg2r2(m) +4 r,(m)-A 2&l-pp) 
J[ r 

6, = 

J; >I r,(m)+ y ,/%--A(1 -p&~rdm) I/* 
+ 2 (1 -C*)Pc, 

2[r,(m)a(~~(I-A)+~(l-c,)ii,)] 

The integral energy balance equation (31) still has 
three unknown quantities: B, m, and 6,. Conse- 
quently, to solve equation (31) it is necessary to 

A=$~;. 
* 

(3% 

additionally determine the connection between these Physically the quantity (6,) is real, therefore con- 
parameters. dition (36) for the existence of solution (38) must be 

It is known that power profile of the averaged vel- considered as the restriction imposed on the region of 
ocity satisfactorily describes experimental results only applicability of the model as a whole. 
for the turbulent flow core. For the viscous sublayer, To determine the sign in front of the square root in 
the linear law of velocity variation is valid. Within the the numerator equation (38), zero concentration of 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
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the dispersed phase in the flow was considered The resulting relationship of the turbulent two- 
phase flow hydraulic resistance with the dispersed 
phase parameters was obtained from equations (I), 

6, = + (40) (2), and (38). For this purpose, equations (1) and (2) 
were rewritten with the number 11.5 in equation (2) 

From this formula it follows that only the plus sign being replaced by the dimensionless single-phase flow 
has a physical meaning. viscous sublayer thickness 

The case of the zero concentration of the dispersed 
phase, equation (40) was also used to establish the 
relationship between the dimensionless viscous 

(43) 

sublayer thickness 6, and the exponent m of the 
averaged velocity power profile, Fig. 3. From Fig. 3 This allowed the determination of the relationship 

it follows that to the interval of the possible values of between the hydraulic resistance of turbulent two- and 

the viscous sublayer thickness single-phase flows in the form 

5 < 6, < 30 (41) A2 (6, ,I2 
there corresponds the range of the possible values of -=(s,)2. 1, 

WV 

the exponent m 

0.1 < m < 1. (42) 
With relations (38) and (40) taken into account, the 
resulting equation for the hydraulic resistance of a 
turbulent two-phase flow acquired the form 

A2 
(r3(~~~““)~[TI(m)-~(~J$l-&+~(l-c2)~P)]~ 

li;= 

i[( 

2 

> ( 
’ +4(r,(m)-A ~&(l-pp) 

(45) 

ALw2r2(m)+ u* 
r2(mM &g2 

The maximum agreement with the familiar exper- 
imental results (Fig. 4) and also with the generally 
adopted description of the averaged velocity protie 
by the logarithmic law of the wall and by the l/7 and 
l/l0 power profiles are observed with the exponent 
m = 0.348. Moreover, this value of m determines the 
viscous sublayer thickness in a single-phase flow, 
6, = 11.5, which agrees perfectly with the original 
scheme of a turbulent boundary layer consisting of 
two strata. The values m = 0.348 and 6, = 11.5 were 
therefore used in calculations when comparing the 
model proposed with experimental data. 

FIG. 3. Functional relationship between the viscous sublayer 
thickness and the exponent m. 

Analysis of equation (45) showed that it correctly 
represents the approximation of the two-phase flow 
resistance to the single-phase turbulent friction when 
the dispersed phase concentration decreases to zero 
and describes the possible reduction of hydraulic 
losses in a dispersed phase-laden flow at certain con- 
centrations of transferred particles. 

I 

II II I I I I 
6 6 UJ 20 34 4050 

u, 

FIG. 4. Selection of the averaged velocity profile approxi- 
mation for determining the viscous sublayer thickness. (1) 
--P+ =y+, (2) -6, = 5 In (y+)-3.05, (3) -ri+ = 2.5 In 
(y+)+5.5,(4) -12, = 8.74(~+)"',(5) -ti+ = 11.5(y+)“‘“, 
(6) -ti+ = B(y+)“, m = l/2, (7) --P+ = B(y+)“, 

m = 0.348,(8) -C+ = B(y,)“,m = l/8. 
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The region of applicability of equation (45) is determination of the limit for the ‘laminarization’ 
restricted, on the one hand, by conditions (36) and effect of the dispersed phase, it is evident that the latter 
(37) for the existence of the solution to equation (35), trend will be dominating. By going over in equation 
and, on the other hand, by the fulfillment of comp- (48) to the diameter of particles, the unknown relation 
lementary conditions that determine the minimum was obtained in the form 
friction rate and the size of particles responsible for the 
turbulent flow ‘laminarization’ effect, The minimum d < ]8!? !f I’*. 
possible dynamic velocity was obtained from the con- P 

( > Pp u* 
(49) 

ditions of the existence of a two-phase flow [21] Equation (45) gave the optimum dispersed phase con- 

lP4 ” lPpd,2 -2 
centration corresponding to the maximum decrease in 

18 p y’z ~p~g<‘* (46) friction with complete ‘laminarization’ of the flow 
when the drag of the turbulent two-phase flow is 
reduced to laminar friction 

PP TUi 
(l-,(m)+ $/h)(Re” ” -202.275) 

-----c=- 
P(&=l,, V 

(~~(]-~p)+~(]-c*)~)~~o.7sr~(m)+~~ 

04 

-202.275(1 -I,)/+,) 

whence 

u*,,n = (vg)“‘. (47) 

When estimating the size of particles that allows the 
hydraulic resistance to be decreased, the Owen theory 
[22] was employed which assumes that the friction 
reduction is possible in a flow laden with particles the 
relaxation time of which is higher than the charac- 
teristic time of energy-containing vortices, but which 
does not exceed the characteristic time of the 
maximum possible vortices 

Experimental investigations indicate, however, the 
unfeasibility of the effect of complete turbulent flow 
‘laminarization’ by a dispersed phase, in view of which 
relation (50) may serve only as a qualitative estimate 
of the upper limit of concentration for the maximum 
decrease of losses in a turbulent two-phase flow. 

4. COMPARISON OF PREDICTED RESULTS 

WITH EXPERIMENTAL DATA 

In order to verify the proposed model, a com- 
parison was carried out between the results predicted 
from the equations obtained and the available exper- 
imental data. The model demonstrates quite an ident- 
ical decrease in the turbulent two-phase system drag 
for both a vertically ascending and a horizontal flow. 
This theoretical concept is confirmed by the exper- 
imental results of [IO]-the sole source available at 
the disposal of the present authors which contains 
information about the influence of channel orien- 
tation in space on the value of hydraulic losses by a 
two-phase flow under other hydrodynamic conditions 
being equal. Figure 5 demonstrates a good coinci- 
dence of the results of calculation by equation (45) 
with the experiment considered. 

O.lR < TU* < R. (48) 

After the transition f&m the relaxation time to the 
diameter of particles with allowance for condition 
(47), the limits for the range of sizes were obtained 
with which the dispersed phase ‘laminarizes’ the tur- 
bulent flow 

(,.8;~),*c4<(18;&~*. (49) 

When constructing a relation for the maximum 
possible size of particles in horizontal systems, atten- 
tion should be paid to the second equation of system 
(46). Here u.+ is the specific dynamic velocity existing 
under the given conditions of the flow. The increase 
in the mean flow velocity leads to the growth of the 
dynamic velocity and, consequently, allows one to 
increase the size of the particles in the given case 
transported by the streams. On the other hand, the 
increase in the dynamic velocity according to equation 
(48) leads to a decrease in the ‘lifetime’ of energy- 
containing vortices and, consequently, in the size of 
the particles that allow one to obtain the reduction of 
friction. Since the aim of the present study is the 

An adequate representation of reality by the model 
suggested is also confirmed by Figs. 6 and 7 which 
contain the comparison of the predicted turbulent 
two-phase flow drag with the results of experiments 
[4, 141 for both horizontal and vertically ascending 
systems. 

An analogous conclusion can also be drawn about 
the qualitative solution (50), since the behaviour of 
the relation for the optimum concentration, cor- 
responding to the maximum reduction in friction, 
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FIG. 5. Comparison of experimental and predicted results on 
the turbulent two-phase flow drag [IO]. Air-glass particles: 
D = 22.2 mm, pp = 2500 kg m-‘, Re = 11000. (1) Cal- 
culation from equation (45) ; (2) experiment in a horizontal 
tube; (3) experiment in a vertical tube. (a) -dr = 15 pm, (b) 

--d,=21pm,(c) -d,=21.6pm. 

coincides with the optimum concentration curve 
obtained experimentally in [ 151. 

Concerning the critical dimensions of particles at 
which the friction effect begins to show up, then, 
according to the data of Fig. 2, the experimental values 
of the critical dimensions of particles are equal to 31, 
28 and 165 pm, whereas the values calculated from 
equations (48) and (49) comprise 44.42 and 160 pm, 
respectively. This allows a conclusion about a good 
agreement of prediction with experiment. 

5. CONCLUSION 

The proposed mathematical description of the dis- 
persed phase effect on the turbulent carrying flow 
energy made it possible to generalize the reported 

0 0.5 1.0 1.5 2.0 2.5 
5 

FIG. 6. Comparison of the experimental and predicted 
results on friction drag [4]. Air-corundum particles: hori- 
zontal channel with D = 32.7 mm, pp = 3970 kg m-j, Re = 
40000, 4 = 17 pm, (1) calculation from equation (45), 

(2) experiment. 

FIG. 7. Comparison of experimental and predicted results on 
friction drag [14]. Air-aluminium particles, vertical channel 
with D = SO.,8 mm, pp = 2700 kg me3, d, = 15 pm, 
Re = 60 000, (1) calculation, (2) experiment, Re = 76 000, 

(3) calculation, (4) experiment. 

fragmentary experimental data and to establish the 
general picture of the phenomenon and also to predict 
the friction reduction effect in a turbulent two-phase 
flow. Consequently, the proposed mathematical 
description allows the use of this effect in different 
branches of chemical technology and not only there. 
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